

©Object Matrix Ltd 2014. All Rights Reserved. Page 1 of 15

Object Matrix

Content Search
Version 3.2, Jan 2016

©Object Matrix Ltd 2014. All Rights Reserved. Page 2 of 15

Contents
1 Overview .. 3

2 MatrixStore Search Architecture .. 3

2.1 Fields within Content Search .. 5

2.2 Content Search Fast-Search .. 5

2.3 Content Extraction ... 6

3 Prefixes (New in version 3.2) .. 6

3.1 String queries ... 7

3.2 Range queries .. 7

4 Content Search Language ... 8

4.1 Query ... 8

4.1.1 Terms .. 8

4.1.2 Fields ... 8

4.1.3 Term Modifiers .. 9

4.2 Keywords ... 11

4.3 Ranges ... 12

4.4 Sorts ... 12

4.5 Text attribute Vs String attribute .. 12

4.5.1 Text attribute ... 13

4.5.2 String attribute .. 13

4 Examples ... 13

©Object Matrix Ltd 2014. All Rights Reserved. Page 3 of 15

1 Overview

MatrixStore Content Search has been introduced to MatrixStore v3.1 to allow for API users

to access a high-performance, full-featured text search engine. It is a technology suitable for

nearly any application that requires full-text search and features:

 many powerful query types: phrase queries, wildcard queries, range queries and

more

 fielded searching (e.g. title, author, contents)

 sorting by any field

 multiple-index searching with merged results

2 MatrixStore Search Architecture

MatrixStore supports two search engines:

 Standard keyword search

 Content search

Keyword search has been present within MatrixStore since day 1 and guarantees highest
levels of performance. When a client performs a search it starts by making a single call to
the API. In the background the API performs the following actions:

©Object Matrix Ltd 2014. All Rights Reserved. Page 4 of 15

This is true for both standard and content search. The main difference is:

 Standard Keyword search results can always be returned without the cluster
accessing disk

 Content search requires each online node to access disk to build a result set and
thus will typically be slower than standard keyword search

However, whilst keyword search can only search for exact matches, content search offers a
wealth of search features, including:

 many powerful query types: phrase queries, wildcard queries, range queries and
more, e.g.,

o “Jon*”: can return “Jon”, “Jonathan”…
o “?old”: can return “cold”, “hold” etc.

 fielded searching (e.g. title, author, contents)

 sorting by any field

 multiple-index searching with merged results

API prepares keyword

search query

Request to Cluster

Cluster assigns search

handler node

Search handler node

API Sends request to

handler

Request to Cluster

Node contacts cluster for

result set

Return result set

Client handles result set.

Request next result set...

©Object Matrix Ltd 2014. All Rights Reserved. Page 5 of 15

 fast-search can return requested field values in the search results

2.1 Fields within Content Search

Content search can be made on:

 All key value pairs added as metadata to an object

 All critical data on an object (length, date stored etc)

 Content extracted from an object (see contract extraction)

2.2 Content Search Fast-Search

Fast search can be made in both standard search and content search modes. Fast search
allows the user to define which fields should be returned in the search results, and should be
considered carefully since it can result in searching that is 100x faster.

Imagine a standard search to fill a list of files in a directory, the search might be:

1. Send query (“Get all objects in a directory”)

a. Server returns 100 results

2. For each object:

a. Request Object filename

b. Request Object length

c. Request Object last accessed time

3. Sort and display sorted results

The above query would result in at least 300 round trips to the server.

Instead, a fast query does the following:

1. Send query (“Get all objects and return to me object ID, name, length, last accessed
time”)

a. Server returns 100 results

2. Sort and display sorted results

This can result in just 1 round trip (or 2 or 3 depending on packet sizes etc) to the server.

Even better, content search can sort results and return just the top hits, removing the need
to return all results before displaying the appropriate data.

©Object Matrix Ltd 2014. All Rights Reserved. Page 6 of 15

2.3 Content Extraction

MatrixStore can examine objects added to the store for searchable metadata and keywords.
To have MatrixStore extract content for search, add the following metadata attribute to the
object at the creation of the object.

new Attribute(Constants.CONTENT_TYPE, Constants.TEXT);

In V1, the following field types are supported for content extraction:

 TEXT = "text/plain";

 RTF = "text/rtf";

 HTML = "text/html";

 PDF = "application/pdf";

 MSWORD = "application/msword";

3 Prefixes (New in version 3.2)

In MatrixStore V3.2 two fields are indexed for each attribute: a text field and a field of the
attribute type. The field name of the latter will contain one of the next prefixes indicating
the type info:

_mxs_string_, _mxs_int_, _mxs_long_, _mxs_double_, _mxs_float_ or _mxs_boolean_

Example:

Mxs attribute:

metadata.writeString(“title”, “A Clash of Kings”);

Fields in the index:

- title (text field)

- _mxs_string_title (string field)

Mxs attribute:

metadata.writeInt(“season”, 2);

Fields in the index:

- season (text field)

- _mxs_int_season (int field)

These prefixes give the user more flexibility during searching and are especially useful when
searching string fields or creating range queries using the Lucene query parser syntax.

http://lucene.apache.org/core/5_3_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html

©Object Matrix Ltd 2014. All Rights Reserved. Page 7 of 15

3.1 String queries

Given the next attribute:

metadata.writeString(“title”, “A Clash of Kings”);

We have now multiple options to find the object:

// case-sensitive and exact match

search(“_mxs_string_title: \“A Clash of Kings\”);

// case-sensitive and wildcards

search(“_mxs_string_title: A*”);

// case-insensitive and no exact match (text field)

search(“title: \“a clash of Kings\”);

search(“title: \“a clash of\”);

// etc. (regexp, fuzzy …)

3.2 Range queries

Prefixes allow us to create range queries using the Lucene query parser syntax, which let us
to create more complex queries. Previous syntax is still compatible (see section 3.3).

Example:

// normal range

search(“_mxs_int_season: [1 TO 5]”);

// open range

search(“_mxs_int_season: [1 TO *]”);

// multiple ranges

search(“title: kings AND (_mxs_int_season: [1 TO 2] OR _mxs_int_year: [2012 TO

2014”));

http://lucene.apache.org/core/5_3_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html

©Object Matrix Ltd 2014. All Rights Reserved. Page 8 of 15

4 Content Search Language

Content search queries are made up of the following parts:

 Query

 Keywords

 Ranges

 Sorts

4.1 Query

Queries are based upon Lucene 5.3.1 syntax.

4.1.1 Terms

A query is broken up into terms and operators. There are two types of terms: Single Terms
and Phrases.

A Single Term is a single word such as "test" or "hello".

A Phrase is a group of words surrounded by double quotes such as "hello dolly".

Multiple terms can be combined together with Boolean operators to form a more complex
query (see below).

Note: The analyser used to create the index will be used on the terms and phrases in the
query string. So it is important to choose an analyser that will not interfere with the terms
used in the query string.

4.1.2 Fields

Query supports fielded data. When performing a search you can either specify a field, or use
the default field. The field names and default field is implementation specific.

You can search any field by typing the field name followed by a colon "\u241D " and then
the term you are looking for.

As an example, let's assume an index contains two fields, title and text and text is the default
field. If you want to find the document entitled "The Right Way" which contains the text
"don't go this way", you can enter:

title: "The Right Way" AND text:go

or

title:"The Right Way" AND go

http://lucene.apache.org/core/5_3_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html

©Object Matrix Ltd 2014. All Rights Reserved. Page 9 of 15

Since text is the default field, the field indicator is not required.

Note: The field is only valid for the term that it directly precedes, so the query

title:The Right Way

Will only find "The" in the title field. It will find "Right" and "Way" in the default field (in this
case the text field).

4.1.3 Term Modifiers

Query supports modifying query terms to provide a wide range of searching options.

Wildcard Searches

Query supports single and multiple character wildcard searches within single terms (not
within phrase queries).

To perform a single character wildcard search use the "?" symbol.

To perform a multiple character wildcard search use the "*" symbol.

The single character wildcard search looks for terms that match that with the single
character replaced. For example, to search for "text" or "test" you can use the search:

te?t

Multiple character wildcard searches looks for 0 or more characters. For example, to search
for test, tests or tester, you can use the search:

test*

You can also use the wildcard searches in the middle of a term.

te*t

Note: You cannot use a * or ? symbol as the first character of a search.

Regular Expression Searches

Query supports regular expression searches matching a pattern between forward slashes "/".
The syntax may change across releases, but the current supported syntax is documented in
the RegExp class. For example to find documents containing "moat" or "boat":

/[mb]oat/

Fuzzy Searches

Query supports fuzzy searches based on Damerau-Levenshtein Distance. To do a fuzzy search
use the tilde, "~", symbol at the end of a Single word Term. For example to search for a term
similar in spelling to "roam" use the fuzzy search:

roam~

This search will find terms like foam and roams.

http://lucene.apache.org/core/4_1_0/core/org/apache/lucene/util/automaton/RegExp.html?is-external=true

©Object Matrix Ltd 2014. All Rights Reserved. Page 10 of 15

An additional (optional) parameter can specify the maximum number of edits allowed. The
value is between 0 and 2, For example:

roam~1

The default that is used if the parameter is not given is 2 edit distances.

Boolean Operators

Boolean operators allow terms to be combined through logic operators. Query supports
AND, "+", OR, NOT and "-" as Boolean operators(Note: Boolean operators must be ALL CAPS).

OR

The OR operator is the default conjunction operator. This means that if there is no Boolean
operator between two terms, the OR operator is used. The OR operator links two terms and
finds a matching document if either of the terms exist in a document. This is equivalent to a
union using sets. The symbol || can be used in place of the word OR.

To search for documents that contain either "Object Matrix" or just "Matrix" use the query:

"Object Matrix" Matrix

or

"Object Matrix" OR Matrix

AND

The AND operator matches documents where both terms exist anywhere in the text of a
single document. This is equivalent to an intersection using sets. The symbol && can be used
in place of the word AND.

To search for documents that contain "Object Matrix" and "Object MatrixStore" use the
query:

"Object Matrix" AND "Object MatrixStore"

+

The "+" or required operator requires that the term after the "+" symbol exist somewhere in
a the field of a single document.

To search for documents that must contain "matrix" and may contain "object" use the query:

+matrix object

NOT

The NOT operator excludes documents that contain the term after NOT. This is equivalent to
a difference using sets. The symbol ! can be used in place of the word NOT.

To search for documents that contain "object matrix" but not "matrix store" use the query:

"object apache" NOT "matrix store"

Note: The NOT operator cannot be used with just one term. For example, the following
search will return no results:

©Object Matrix Ltd 2014. All Rights Reserved. Page 11 of 15

NOT "object apache"

-

The "-" or prohibit operator excludes documents that contain the term after the "-" symbol.

To search for documents that contain "object matrix" but not "matrix store" use the query:

"object apache" -"matrix store"

Grouping

Query supports using parentheses to group clauses to form sub queries. This can be very
useful if you want to control the boolean logic for a query.

To search for either "object" or "matrix" and "website" use the query:

(object OR matrix) AND website

This eliminates any confusion and makes sure you that website must exist and either term
object or apache may exist.

Field Grouping

Query supports using parentheses to group multiple clauses to a single field.

To search for a title that contains both the word "return" and the phrase "pink panther" use
the query:

title:(+return +"pink panther")

Escaping Special Characters

Query supports escaping special characters that are part of the query syntax. The current list
special characters are

+ - && || ! () { } [] ^ " ~ * ? : \ /

To escape these character use the \ before the character. For example to search for (1+1):2
use the query:

\(1\+1\)\:2

4.2 Keywords

Fast search is supported by adding the following line to a query:

keywords: key1, key2, key3, …

Results then contain:

Object_Id key1=value1 key2=value2 key3=value3, etc

Where key1 is the key. When a key is a system keyword the prefix

__mxs__name

contains two underscores, mxs, two underscores, name of field.

The following system keywords are valid:

©Object Matrix Ltd 2014. All Rights Reserved. Page 12 of 15

Keyword Description

__mxs__id Object id

__mxs__locked Object Locked?

__mxs__inCompliantStore Object in a compliant store?

__mxs__ storesCurrentRetentionPeriod Retention period of the vault (seconds)

__mxs__creationTime Time object was created

__mxs__modifiedTime Time object was last user modified

__mxs__accessedTime Time object was last user accessed

__mxs__length Length of object data in bytes

__mxs__calc_adler32 Adler32 checksum of the object

__mxs__calc_md5 MD5 of the object

__mxs__location Nodes the object is physically located
upon

__mxs__online Is the object online or has it been
archived?

Results are always text.

4.3 Ranges

Range Queries allow one to match documents whose field(s) values are between the lower
and upper bound specified by the Range Query. Range queries can consist of one or more
lines of

range:field\u241D[string|int|long|float|double]\u241D[>=|>]\u241Dfrom\u241D

[<=|<]\u241Dto

4.4 Sorts

Sorts allow the result set to be sorted according to field values. Multiple sorts can be added,
with the primary sort coming first. Sort syntax is:

sort:[>|<]\u241Dfield\u241D[string|int|long|float|double]

4.5 Text attribute Vs String attribute
Note: See changes in version 3.2

©Object Matrix Ltd 2014. All Rights Reserved. Page 13 of 15

To create a String attribute using the API you can use either, a String type or a Text type:

…

ObjectTypedAttributeView metadata = object.getAttributeView();

…

metadata.writeString(“title”, “A Clash of Kings”);

or

metadata.writeText(“title”, “A Clash of Kings”);

When performing a field query, content search will return different results depending on

the type of the attribute as explained in the next sections.

4.5.1 Text attribute

A Text attribute is indexed and tokenized so that you can search it using particular terms

(case insensitive) contained in the attribute value. The query

title:clash

will find an object with the Text title attribute value “A Clash of Kings”.

4.5.2 String attribute

A String field is indexed but not tokenized: the entire String value is indexed as a single

token and with the original case. For example this might be used for a “country” field or an

“id” field. In this case, the query

title:clash

will not find an object with the String title attribute value “A Clash of Kings”. Even the query

title:”A Clash of Kings”

will not find the object as the parser lowercases the words of the query so they do not

match with the original title value.

The way to search by a String attribute is using a range query:

String GS = "\u241D";

String mytitle= “A Clash of Kings”

*\nrange:title" + GS + "string" + GS + ">=" + GS + mytitle + GS + "<=" + GS +

mytitle

4 Examples

Each example below calls upon a method called contentSearch.

©Object Matrix Ltd 2014. All Rights Reserved. Page 14 of 15

Please note that the escape character is “\u241D”

The code for this is:

 private static Set<String> contentSearch(Vault vault, String query) throws

IOException {

 Attribute contentQuery = new Attribute(Constants.CONTENT, query);

 return vault.searchObjects(contentQuery, 10);

 }

Sample searches are:

 // find all objects with “three” in the content

 ids = contentSearch(vault, "three");

 System.out.println("Exact Matching found " + ids.size() + " objects");

 // search all objects with exact matching of attribute incrementingInt

= 10005

 ids = contentSearch(vault,

"*\nrange:incrementingInt\u241Dint\u241D>=\u241D10000\u241D<=\u241D10000");

 System.out.println("Exact Matching found " + ids.size() + " objects");

 /*

 * Range Matching

 */

 // search all objects with attribute incrementingInt between 100 and

20000

 ids = contentSearch(vault,

"*\nrange:incrementingInt\u241Dint\u241D>=\u241D100\u241D<=\u241D20000");

 System.out.println("Range Matching found " + ids.size() + " objects");

 /*

 * Field Sorting

 */

 // find all objects with “two” in the content, sort results by

__mxs__id

 ids = contentSearch(vault, "two\nsort:>\u241D__mxs__id\u241Dstring");

 System.out.println("Field Sorting found " + ids.size() + " objects");

 // find all objects with “one” in the content, sort the results on an

integer field called “incrementingInt”

 ids = contentSearch(vault,

"one\nsort:>\u241DincrementingInt\u241Dint");

 /*

 * Keywords

 */

 ids = contentSearch(vault, "five\nkeywords:__mxs__id,__mxs__location");

 for (String id: ids) {

 System.out.println("Result with keywords embedded: " + id);

 }

 /*

 * Wildcard Search

 */

 ids = contentSearch(vault, "five*");

 System.out.println("Wildcard Search found " + ids.size() + " objects");

 /*

©Object Matrix Ltd 2014. All Rights Reserved. Page 15 of 15

 * Fuzzy Search

 */

 ids = contentSearch(vault, "fiva~");

 System.out.println("Fuzzy Search found " + ids.size() + " objects");

 /*

 * AND Search

 */

 createSimpleObject(vault, "ANDSearches0 ANDSearches1");

 while (!object1.isIndexed()){

 try{

 Thread.sleep(5000);

 }catch (InterruptedException e){}

 }

 ids = contentSearch(vault, "*\nANDSearches0 AND ANDSearches1");

 System.out.println("AND Search found " + ids.size() + " objects");

 /*

 * OR Search

 */

 createSimpleObject(vault, "ORSearches0");

 createSimpleObject(vault, "ORSearches1");

 ids = contentSearch(vault, "*\nORSearches0 OR ORSearches1");

 System.out.println("OR Search found " + ids.size() + " objects");

 /*

 * NOT Search

 */

 createSimpleObject(vault, "noSearches");

 createSimpleObject(vault, "noSearches MatrixStore");

 ids = contentSearch(vault, "noSearches NOT MatrixStore");

 System.out.println("NOT Search found " + ids.size() + " objects");

 /*

 * Grouping

 */

 createSimpleObject(vault, "Grouping0");

 createSimpleObject(vault, "Grouping1 MatrixStore");

 ids = contentSearch(vault, "((Grouping0 OR Grouping1) AND

MatrixStore)");

 System.out.println("Grouping found " + ids.size() + " objects");

The query consists of a string containing:

query: lucene syntax query

keywords:[keyword],[keyword],...

range:field\u241D[string|int|long|float|double]\u241D[>=|>]\u241Dfrom\u241D[<=|<

]\u241D to (can be many)

sort:[>|<]\u241Dfield\u241D[string|int|long|float|double] (can be many)

